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Prerequisites and textbook references

I Probability at the level say of [Williams, 1991]

I Basic stochastic processes (Markov chains, Brownian motion),
e.g [Grimmett and Stirzaker, 2001]

I Computational statistics, at the level say of [Liu, 2008]

The theoretical background on diffusions can be found for example
in [Øksendal, 1998] or [Kloeden and Platen, 1995].

The theme is a fusion of computational statistics and probabilistic
inference for stochastic processes. Hence, we will generally we will
iterate the presentation pattern

stats motivation → stoc. proc. theory → comp. method



Stochastic differential equations (SDEs)
We model d-dimensional stochastic process V ∈ Rd as the
solution of an SDE of the type:

dVs = b(s,Vs ; θ) ds + σ(s,Vs ; θ) dBs , s ∈ [0,T ] ; (1)

I B is an m-dimensional standard Brownian motion

I b(·, ·) : R+ × Rd → Rd is the drift

I σ(·, · ) : R+ × Rd → Rd×m is the diffusion coefficient and
plays the role of the square root of the covariance matrix

Γ = σσ∗

I V0 can be taken as fixed or elicited with a distribution,
depending on the context.

I In parametric setting the functionals are known only up to
certain parameters θ (e.g a linear combination of basis
functions).



Applications

SDEs provide a natural model for processes which at least
conceptually evolve continuously in time and have continuous
sample paths (although natural extensions exist for introducing
jump components)

Application areas are ever increasing: finance [Sundaresan, 2000,
Eraker et al., 2003, Ait-Sahalia and Kimmel, 2007], biology
[Golightly and Wilkinson, 2006], molecular kinetics
[Horenko and Schütte, 2008, Kou et al., 2005], longitudinal data
analysis [Taylor et al., 1994]...



SDEs in many ways are the stochastic counterpart of ODEs which
are the special case when σ = 0. They are Markov processes
therefore a natural model for prediction.



Part Ia: introduction to SDEs

I Canonical representation

I Itô’s lemma

I Solving SDEs: linear SDEs

I Generator of the diffusion, Kolmogorov backward equation,
transition operator



Interpretation of the equation (1)

I infinitesimall-time interpretation of the equation ( non-linear
time series): for fixed t and ε ≈ 0

Vt+∆t ≈ Vt + b(t,Vt ; θ)∆t + σ(t,Vt ; θ)(Bt+∆t − Bt) . (2)

I white noise interpretation (dynamical system):

dVs

ds
= b(s,Vs , θ) + σ(s,Vs , θ)

dBs

ds

I mathematically precise interpretation (semi-martingale): for
s < t

Vt = Vs +

∫ t

s
b(u,Vu; θ)du +

∫ t

s
σ(u,Vu; θ)dBu (3)

Note on notation: drop out all arguments of functionals unless it is
necessary



Brownian motion (BM)

B is standard Brownian motion (e.g Ch.2 of [Øksendal, 1998]):

1 B0 = 0

2 B has independent stationary increments: for
t1 < t2 < t3 < t4, Bt4 − Bt3 is independent of Bt2 − Bt1 ;

3 For s < t, Bt − Bs ∼ N(0; t − s)

B is Markov and a martingale. Of particular relevance is its sample
path properties. It is continuous but rough.

lim
n→∞

n∑
i=1

(Bit/n − B(i−1)t/n)2 = t (4)

almost surely. The expression above is known as the quadratic
variation. Multidimensional BM.



Canonical representation

A useful and intuitive representation for a probability space on
which Brownian motion can be defined is the following:

Let Ω = C ([0; 1); Rm) the space of continuous paths, and F the
corresponding cylinder σ-algebra, and ω = (ωs ; s ∈ [0;∞)) a
typical element of Ω. Then, BM is the measurable space (Ω,F)
equipped with certain probability measures Wx , where B0 = x
Wx -a.s. (i.e B(ω) = ω).



Typical sample paths (first thought about simulation)
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Making sense of (3)

I Stochastic integral
∫ t

0 σdB mean and variance (Itô isometry)

I V is defined implicitly, thus we require existence and
uniqueness of solutions - connection to ODEs

Provided the latter holds, its solution is called a diffusion process:

Vt = ft(B; V0) (5)

where ft is an Ft-measurable function of the Brownian path
(strong-weak solutions). The solution has continuous sample paths
and it is a Markov process



Itô’s lemma
The foundation of stochastic calculus; applies to Itô processes and
it involves the quadratic variation process

Xt = f (t,Vt) where f : R × Rd → R l

dXt =
∂fk
∂t

+
∑
i

∂fk
∂vi

dVi +
1

2

∑
i ,j

∂2fk
∂vi∂vj

dVidVj

I Rules for applying the previous formula: dVidVj . When V is
the diffusion (1), and f (t; v) = f (v) is real-valued, we get

dXt =

 d∑
i=1

∂f

∂vi
bi +

1

2

∑
i ,j

∂2f

∂vi∂vj
Γi ,j

dt+
∑
i

∂f

∂vi

∑
j

σijdBj

(6)

I formula for d = l = 1

I Observation: X might not be a diffusion



Solving SDEs

There are limited families of SDEs which we can solve analytically,
and obtain explicitly Vt as a function of the Brownian path. Itô’s
lemma is a valuable tool in those cases. See for example Ch.4 of
[Kloeden and Platen, 1995]

In many cases, even when the solution can be found analytically, in
the sense of (5) with an explicitly given ft , it might not be very
useful for practical purposes, since ft will be too complicated, e.g
the result of nested solutions of SDEs.

For statistical purposes, we are interested in cases where the
solution allows us to find the conditional distribution of Vt given
Vt0 for t > t0 (see later for discrete-time dynamics of diffusions).



For 1-d SDEs we have a clear result: linear SDEs (in a broad
sense) can be solved, as well as the SDEs which after a
transformation become linear. Nevertheless, the function ft might
be too complicated for practical use

Practically useful solution is available for affine SDEs with
multiplicative noise and general linear SDEs with additive noise

It is much harder to give a similar result for multi-d SDEs,
although for a special family of multi-d linear SDEs we have again
a direct solution. Note that even linear SDEs with additive noise
might not have practically simple solution

Linear SDEs play an important role in applications, but as we will
see, instrumental role in MC for non-linear diffusions. Therefore,
we will study them in some detail.



Trivial case: scaled BM with drift

dVs = a2(s)ds + b2(s)dBs

Then without knowledge of stochastic calculus (!), effectively by
definition of the SDE, we have

Vt = Vt0 +

∫ t

t0

a2(s)ds +

∫ t

t0

b2(s)dBs

This is a Gaussian process (conditionally on Vt0); derive moments



1-d linear SDEs (broad sense)

Following terminology in [Kloeden and Platen, 1995] we call an
1-d SDE linear in a broad sense if it takes the form

dVs = (a1(s)Vs + a2(s))ds + (b1(s)Vs + b2(s))dBs

Special cases of this family are the Ornstein-Uhlenbeck process
(Vasicek model), the geometric BM (Black-Scholes model), the
Brownian bridge, and trivially BM.

An explicit solution is available for this family.



Case I: narrow sense, additive noise, useful solution

We first show the solution for the so-called linear SDEs in a narrow
sense, which are obtained when b1 = 0, therefore the SDE is driven
by additive noise

Let

P(t0, t) = exp

{∫ t

t0

a1(s)ds

}
Note that dP−1/dt = −P−1a1(t). Then, applying Itô to
P(t0, t)−1Vt we obtain

d(P(t0, t)−1Vt) = P(t0, t)−1a2(t)dt + P(t0, t)−1b2(t)dBt

thus, we get the solution

Vt = P(t0, t)

(
Vt0 +

∫ t

t0

P(t0, s)−1a2(s)ds +

∫ t

t0

P(t0, s)−1b2(s)dBs

)



Conditionally on Vt0 this is also a Gaussian process; the moments
can be derived in various ways (we will revisit this). At first
instance, we can get the mean and variance directly from the
solution, thus we get a complete characterization of the
conditional distribution of Vt given Vt0

Actually, the tractability of P will determine whether the solution
yields directly the conditional moments. However, in any case we
have made an important step towards understanding the
discrete-time dynamics



Case II: multiplicative noise

We now consider the general case with b1 6= 0, thus we have
multiplicative noise.

Note that the affinne SDE

dVt = a1(t)Vtdt + b1(t)VtdBt

can be solved by our previous result since it reduces to a scaled
BM with drift by taking the log-transform and using Itô:

Vt = Vt0 exp

{∫ t

t0

(
a1(s)− 1

2
b2

1(s)

)
ds +

∫ t

t0

b1(s)dBs

}



The general case, with a2 and/or b2 different from 0 can be solved,
in the sense of expressing Vt as a (very complicated!) function of
the Brownian path; the solution involves the time and stochastic
integrals with coefficients depending on the solution of the affine
SDE driven by the same BM.

In general however, the solution will not be practically useful (for
simulation, statistical inference)



Multivariate linear SDEs with additive noise

dVs = (a1(s)Vs + a2(s))ds + b2(s)dBs

where a1, a2, b2 are matrices of appropriate dimensions. Unlike the
1-d case, the solution is hard to obtain in this case. This is in
accordance with ODEs.

It is easy when a1 is constant. In that case, working as before we
obtain the same solution as in 1-d case with

P(t0; t) = exp{a1(t − t0)}



Example: Brownian bridge

Consider the following SDE:

dVs =
y − Vs

T − s
ds + dBs , s ∈ [0,T ] (7)

i.e a1(s) = −1/(T − s)I , a2 = y/(T − s), b2 = I , b1 = 0. This is
an instance of multi-d linear SDE with non-constant a1 which can
be solved, since a1 has a very simple form.

Working as before, we get for 0 < t1 < t2 < T , as

Vt2 | Vt1 ∼ N

(
Vt1 +

t2 − t1

T − t1
(y − Vt1),

(t2 − t1)(T − t2)

T − t1
Id

)
.

(8)



Generator

Homogeneous Markov processes: ODEs, discrete and
continuous-time Markov chains, SDEs. Common structure

Genetic code of a Markov process enconded in the ”one-step”
distribution: intuition from Markov chains

For continuous-time processes it is an infinitesimall step.



Generator of diffusions

We concentrate on homogeneous processes:

dVs = b(Vs)ds + b(Vs)dBs

Following a similar definition for general Markov processes the
generator is defined as an operator acting on an appropriate space
of real-valued functions f : Rd → R, and characterised as follows:

Af (v) = lim
ε→0

E[f (Vε)|V0 = v ]− f (v)

ε
, v ∈ Rd (9)

Note that by continuity of V , both nominator and denominator
tend to 0. For convenience we denote (this is standard)
E[f (Vε)|V0 = v ] = Ev [f (Vε)].



Note that drectly by Itô we have

Ev [f (Vε)] = f (v) +

∫ ε

0
E

∑
i

∂f

∂vi
bi +

1

2

∑
i ,j

∂2f

∂vi∂vj
Γij

ds

therefore the generator is

Af =
∑
i

∂f

∂vi
bi +

1

2

∑
i ,j

∂2f

∂vi∂vj
Γij

for sufficiently regular set of functions, which includes all bounded
C 2 functions. Note that A is a linear operator



Combining our new expressions together with Itô we get for
real-valued f :

df (Vt) = Af (Vt)dt +
d∑

i=1

∂f

∂vi

∑
j

σi ,jdBj ,t (Itô for diffusions)(10)

Ev [f (Vt)] = f (v) +

∫ t

0
Ev [AF (Vs)]ds (version of Dynkin’s formula)

Note the special role that the null space of A plays, and its
relation with martingale functions of the diffusion



Kolmogorov backward equation

Let f be bounded C 2 function, Vt a time homogeneous diffusion
with generator A, and

u(t, v) = Ev [f (Vt)]

Then u belongs in the domain of A for every t and

∂u

∂t
= Au

u(0, v) = f (v)
(11)

(and in fact, it is the unique solution of the above PDE)



Sketch of the proof (based on Markov property)

Observation 1: Note that by Dynkin:

u(t, v) = f (v) +

∫ t

0
Ev [Af (Vs)]ds

which shows that t 7→ u(t, v) is differentiable with

u̇ = Ev [Af (Vt)]



Fix some t, then we check by definition if u(t, v) is in the domain
of A. For clarity, let g(v) = u(t, v)

Ev [g(Vr )]− g(v)

r
=

Ev [EVr [f (Vt)]]− f (v)

r

=
Ev [Ev [f (Vt+r ) | Fr ]]− f (v)

r

=
Ev [f (Vt+r )]− f (v)

r

=
u(t + r , v)− u(t, v)

r
→ u̇



This equation gives a linear PDE for the evolution of expectations
of the diffusions; note that the corresponding ODE is non-linear
(when we fix v and wish to compute a given expectation)

Thus, although this is a nice mathematical result, to be used in
practice numerical solutions will be necessary



Transition operator and BKE

Let Pt(v , ·) be the transition operator:

Pt f (v) = Ev [f (Vt)] = u(t, v) (12)

Then, we have shown that

d

dt
Pt f = Pt(Af ) = A(Pt f ) (13)

thus in some sense A and Pt commute



Part Ib: Statistical challenges: observation schemes
and probabilistic inference



Fully observed case

I Continuous-time observations over a compact time interval
[0,T ]. Realistically, we might have data at arbitrarily high
frequency

I No observation noise

I The model makes sense at that high frequency!

We wish to estimate the drift and diffusion functionals. We will see
that parametric inference for this observation regime is rather
straightforward. In fact, there are still interesting non-trivial
developments for non-parametric inference.



Partially observed case

I Discretely observed diffusions and parameter estimation: (1)
observed at discrete time points 0 = t0 < t1 < · · · < tn with
observed values v = {v0, v1, . . . , vn}, e.g V is the vector of
predator-pray population sizes, the configuration of a
molecule). In this case we wish to estimate the drift and
diffusion functionals. Parametric/non-parametric

I Partially observed diffusions, state and parameter estimation:
(1) is not fully observed at discrete time points (e.g V is the
the price and stochastic volatility, V is only the pray size, V is
the position of a tracked object observed with noise, higer
order models...). In this case we wish to estimate unknown
parameters driving the process and make inference for the
unobserved components. Filtering-smoothing



Paradigm followed in the course: probabilistic inference

We are interested in likelihood-based inference for the unknown
parameters, i.e maximum likelihood and Bayesian methods; and
probabilistic inference for the unobserved processes, i.e inference
according to the conditional law of the process given the observed
data, where the prior law is given by the SDE specification (1). To
simplify the presentation we will refer to such estimation
procedures as probabilistic inference.



Why likelihood-based statistics?

Many classical (ie well-established) results in Statistics support the
notion that inference should be based solely on the likelihood (and
prior):

I Neymann-Pearson, the likelihood principle.

I Cramer-Rao lower bound, asymptotic normality of MLE in
regular problems

I Coherence and access to a ready-made calculus for inference
and decision making, called probability theory (Bayesian)



Of course there are arguments against likelihood-based inference:

I All the mathematical arguments for likelihood-based inference
rely on the assumption the model is correct which is of course
almost always untrue.

I Some non-likelihood based methods can also achieve the
Cramer-Rao lower bound (or get close to it) (efficiency).

I There are less clear-cut results about the “optimality” of
MLEs for finite data sets

I Likelihood inference can be hard!

A very rich and interesting literature exists for parametric inference
for discretely-observed diffusions using non-likelihood methods.

Later in the course, time permitting, we will give a summary of
alternative approaches to inference for SDEs



Why probabilistic inference?

It is quite undebated in the literature that provided a joint model is
assumed for observed and unobserved variables, inference for the
unobserved variables should be based on the conditional law (this
is basic probability theory and conditioning).

There is less consent about how to estimate unknown parameters
in presense of unobserved processes (missing data). Nevertheless,
integrating out the unobserved processes propertly accounts for the
lack of information. Bayesian approaches are more natural and
effective in these incomplete data model-based frameworks



Note that for diffusions there is always missing data, since we will
note be able to record the whole path, thus the process in-between
observation times will be unobserved, even in the fully-observed
case.

Of course, we expect this not to be a serious problem if the
frequency of observation is appropriately ”high”



Part II: Likelihood inference for the fully observed
case

I Quadratic variation

I Girsanov theorem and likelihoods in the path space

I Plug-in MLE



Setup

We observe (vs ; s ∈ [0; T ]) from (1) and wish to estimate the
unknown parameters. We will see shortly that the drift and
diffusion coefficient are treated very differently in the fully observed
case

A developed mathematical framework is available for statistical
analyses in this high frequency regime, see for example
[Prakasa Rao, 1999]. Two main components of this theory is the
quadratic variation identity and the Cameron-Martin-Girsanov
change of measure.



Quadratic variation identity

local characteristics of the SDE can be completely identified given
an observed path:

lim
∆→0

∑
tj≤t

(Vtj+1 − Vtj )(Vtj+1 − Vtj )
∗ =

∫ t

0
Γ(s,Vs)ds (14)

in probability for any partition 0 = t0 ≤ t1 ≤ · · · ≤ tn = t, whose
mesh is ∆.

This generalizes the simpler version for the BM (4)



Implications for volatility estimation

I from high frequency data we can consistently estimate the
diffusion coefficient. In fact it is the square of it which is
identifiable: any square root of Γ is indistinguishable by the
data

I Therefore, unless one has very good reasons it is not necessary
to model parametrically the diffusion coefficient; we can treat
it fully non-parametrically, thus work with

dVs = b(s,Vs ; θ) ds + σ(s,Vs) dBs

and estimate σ consistently using the QV identity to get σ̂
(which effectively is very close to σ if the mesh is sufficiently
fine)

I The topic of estimation of σ under various model
mispecifications has received a great amount of interest lately



Implications for estimating drift parameters

We have seen that a path on a compact interval completely
identifies the diffusion coefficient of the SDE. This clearly implies
that the probability laws generated by the diffusions

dVt = bdt + σ1dBt

dVt = αdt + σ2dBt

are mutually singular if Γ1 6= Γ2. Therefore, the problem of
estimating parameters in the drift can be informally cast as:
estimating θ among the probability laws corresponding to the same
σ.



Likelihood ratios in the path space

Under weak conditions the laws which correspond to SDEs with
the same diffusion coefficient but different drifts are equivalent and
a simple expression for the Radon-Nikodym derivative (likelihood
ratio) is available. This is the context of the
Cameron-Martin-Girsanov theorem for Itô processes, e.g Theorem
8.6.6 of [Øksendal, 1998]. (it is very easy to understand what goes
on as a Gaussian change of measure)

Consider functionals h and α of the dimensions of b and assume
that h solves the equation:

σ(s, x)h(s, x) = b(s, x)− α(s, x)

Additionally, let Pb and Pα be the probability laws implied by the
SDE with drift b and α respectively.



Then, under certain conditions Pb and Pα are equivalent with
density (continuous time likelihood) on Ft = σ(Bs ; s ≤ t), t ≤ T ,
given by

dPb

dPα

∣∣∣∣
t

= exp

{∫ t

0
h(s,Vs)∗dBs −

1

2

∫ t

0
[h∗h](s,Vs)ds

}
. (15)

In this expression, B is the Pα Brownian motion, and although this
is the usual probabilistic statement of the
Cameron-Martin-Girsanov theorem, it is not a natural expression to
be used in statistical inference, and alternatives are necessary. (we
want a variable measurable w.r.t the information generated by V ).



For example, note that when σ can be inverted, the expression can
be considerably simplified:

exp

{∫ t

0
[(b − α)∗Γ−1](s,Vs)dVs

−1

2

∫ t

0
[(b − α)∗Γ−1(b + α)](s,Vs)ds

}
.

(16)

For statistical inference about the drift (1) the Girsanov theorem is
used with α = 0. Any unknown parameters in the drift can be
estimated by using (16) as a likelihood function. In practice, the
integrals in the density are approximated by sums, leading to an
error which can be controlled provided the data are available at
arbitrarily high frequency.



Framework for statistical inference in the high-freq regime

I Estimate σ non parametrically using QV

I Plug in the estimate in (16) (with α = 0) and use the latter
as a likelihood function for θ

This is the approach in [Polson and Roberts, 1994], who also
discuss Bayesian approaches (using this likelihood framework),
estimating Bayes factors for model comparison in simple financial
applications (mean reverting models). In mainstream statistics,
this was the state of the art for implementation of likelihood
inference until mid-90s (with negative results for discretely
observed data from the 80s)



Appendix: understading Girsanov via Gaussian change of
measure

The concept of change of measure is very central statistics and
MC for stochastic processes. We give a simplified presentation of
the change of measure between two Gaussian laws, and to the
various ways this result might be put in use. It is easy to see the
correspondence between the expressions we obtain here and those
for diffuusions

Let (Ω,F) be a measure space with elements ω ∈ Ω, B : Ω→ Rm

a random variable on that space, let σ be a d ×m matrix,
Γ = σσ∗, a, b, be d × 1 vectors, and define a random variable V
via the equation

V (ω) = b + σB(ω) .



Let Rb be the probability measure on (Ω,F) such that B is a
standard Gaussian vector. Therefore, under this measure V is a
Gaussian vector with mean b (hence the indexing of the measure
by b). Assume now that we can find a m× 1 vector h which solves
the equation

σh = (b − a) , (17)

and define B̂(ω) = B(ω) + h. Thus, we have the alternative
representation

V (ω) = a + σB̂(ω) ,

which follows directly from the definitions of V and h.



Let Ra be the measure defined by its density with respect to Rb,

dRa

dRb
(ω) = exp {−h∗B(ω)− h∗h/2} , (18)

which is well-defined since the right-hand side has finite
expectation with respect to Rb. Notice that under this new
measure, B̂ is a standard Gaussian vector. To see this, notice that
for any Borel set A ⊂ Rm,

Ra[B̂ ∈ A] =

∫
{ω:B̂(ω)∈A}

exp {−u∗B(ω)− u∗u/2} dR[ω]

=

∫
{y :y+u∈A}

exp {−u∗y − u∗u/2− y∗y/2} (2π)−m/2dy

=

∫
A

e−v
∗v/2(2π)−m/2dv ,

where the last equality follows from a change of variables.



Notice that directly from (18) we have

dRb

dRa
(ω) = exp{h∗B(ω) + h∗h/2} = exp{h∗B̂(ω)− h∗h/2} . (19)

Let Eb and Ea denote expectations with respect to Rb and Ra

respectively. Thus, for any measurable Rb-integrable function f
defined on Rd ,

Eb[f (V )] = Ea [f (V ) exp{h∗B + h∗h/2}]

= Ea

[
f (V ) exp{h∗B̂ − h∗h/2}

]
. (20)



Let X be another random variable, defined as X (ω) = a + σB(ω).
Since under Ra, the pair (V , B̂) has the same law as the pair
(X ,B) under Rb, we have that

Eb[f (V )] = Eb[f (X ) exp{h∗B − h∗h/2}] .

If further σ is invertible we get

Eb[f (V )] = Eb

[
f (X ) exp

{
(b − a)∗Γ−1X − 1

2
(b − a)∗Γ−1(b + a)

}]
.

(21)



Let Pb and Pa be the law of V implied by Rb and Ra respectively.
Then, assuming that σ is invertible and taking α = 0, we can
obtain from the previous expression the likelihood ratio between
the hypotheses that V has mean b against that it has mean 0, but
a Gaussian distribution with covariance Γ in both cases. Therefore,
we get the likelihood function for estimating b on the basis of
observed data V , while treating Γ as known:

L(b) =
dPb

dP0
(V ) = exp

{
b∗Γ−1V − 1

2
b∗Γ−1b

}
. (22)

which compares directly with (16)



Part III: discrete-time dynamics of diffusions and
discrete-time likelihood

I Transition density, discrete-time likelihood, approximate
dynamics based on discretizations

I Pseudo-likelihood approaches

I Exact simulation of diffusions using rejection sampling on the
path space (Girsanov and a transformation)


